| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Эйлеровы интегралы |  | Эйлеровы интегралы (далее Э) интегралы вида 
 
  (1) 
 (Э первого рода, или бета-функция, изученная Л. Эйлером в 1730—31, ранее рассматривалась И. Ньютоном и Дж. Валлисом) и
 
 
  (2) 
 (Э второго рода, или гамма-функция, рассмотренная Л. Эйлером в 1729—30 в форме, эквивалентной формуле (2); сама формула (2) встречается у Эйлера в 1781); название "Э" дано А. Лежандром. Э позволяют обобщить на случай непрерывно изменяющихся аргументов биномиальные коэффициенты
  и факториал n!, ибо, если а и b— натуральные числа, то 
 
  , Г (а +1) = а! 
 Интегралы (1) и (2) абсолютно сходятся, если а и b положительны, и перестают существовать, если а и b отрицательны. Имеют место соотношения
 
 В (a, b) =  (b, a),
  ; 
 последнее сводит бета-функцию к гамма-функции. Существует ряд соотношений между Э при различных значениях аргумента, обобщающих соответствующие соотношения между биномиальными коэффициентами. Э можно рассматривать и при комплексных значениях аргументов а и b. Э встречаются во многих вопросах теории специальных функций, к ним сводятся многие определенные интегралы, не выражаемые элементарно. Э называется также интеграл
 
 
  
 выражающий т. н. гипергеометрическую функцию.
 
 
 
 Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969; Артин Е., Введение в теорию гамма-функций, пер. с нем., М.— Л., 1934; Уиттекер Е. Т., Ватсон Д. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963.
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 01.11.2025 01:17:19 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |