|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Корреляция (в матем. статистике) | Корреляция (далее К) в математической статистике, вероятностная или статистическая зависимость, не имеющая, вообще говоря, строго функционального характера. В отличие от функциональной, корреляционная зависимость возникает тогда, когда один из признаков зависит не только от данного второго, но и от ряда случайных факторов или же когда среди условий, от которых зависят и тот и другой признаки, имеются общие для них обоих условия. Пример такого рода зависимости дает корреляционная таблица. Из таблицы видно, что при увеличении высоты сосен в среднем растет и диаметр их стволов; однако сосны заданной высоты (например, 23 м) имеют распределение диаметров с довольно большим рассеянием. Если в среднем 23-метровые сосны толще 22-метровых, то для отдельных сосен это соотношение может заметным образом нарушаться. Статистическая К (в матем. статистике) в обследованной конечной совокупности наиболее интересна тогда, когда она указывает на существование закономерной связи между изучаемыми явлениями.
В основе теории К (в матем. статистике) лежит предположение о том, что изучаемые явления подчинены определенным вероятностным закономерностям (см. Вероятность, Вероятностей теория). Зависимость между двумя случайными событиями проявляется в том, что условная вероятность одного из них при наступлении другого отличается от безусловной вероятности. Аналогично, влияние одной случайной величины на другую характеризуется законами условных распределений первой при фиксированных значениях второй. Пусть для каждого возможного значения Х = х определено условное математическое ожидание у (х) = Е (YIX = х) величины (см. Математическое ожидание). Функция у (х) называется регрессией величины по X, а ее график — линией регрессии по X. Зависимость от Х проявляется в изменении средних значений при изменении X, хотя при каждом Х = х величина остается случайной величиной с определенным рассеянием. Пусть m = Е () — безусловное математическое ожидание . Если величины независимы, то все условные математические ожидания не зависят от х и совпадают с безусловными:
у (х) = Е (YIX = х) = Е () = m.
Обратное заключение не всегда справедливо. Для выяснения вопроса, насколько хорошо регрессия передает изменение при изменении X, используется условная дисперсия при данном значении Х = х или ее средняя величина — дисперсия относительно линии регрессии (мера рассеяния около линии регрессии):
2.
При строгой функциональной зависимости величина при данном Х = х принимает лишь одно определенное значение, то есть рассеяние около линии регрессии равно нулю.
Линия регрессии может быть приближенно восстановлена по достаточно обширной корреляционной таблице: за приближенное значение у (х) принимают среднее из тех наблюденных значений , которым соответствует значение Х = х. На рисунке изображена приближенная линия регрессии для зависимости среднего диаметра сосен от высоты в соответствии с таблицей. В средней части эта линия, по-видимому, хорошо выражает действительная закономерность. Если число наблюдений, соответствующих некоторым значениям X, недостаточно велико, то такой метод может привести к совершенно случайным результатам. Так, точки линии, соответствующие высотам 29 и 30 м, ненадежны ввиду малочисленности материала. См. Регрессия.
В случае К (в матем. статистике) двух количественных случайных признаков обычным показателем концентрации распределения вблизи линии регрессии служит корреляционное отношение
,
где — дисперсия (аналогично определяется корреляционное отношение , но между и нет какой-либо простой зависимости). Величина , изменяющаяся от 0 до 1, равна нулю тогда и только тогда, когда регрессия имеет вид у (x) = m, в этом случае говорят, что некоррелирована с X, равняется единице в случае точной функциональной зависимости от X. Наиболее употребителен при измерении степени зависимости коэффициент корреляции между Х и
всегда —1 £ r £ 1. Однако практическое использование коэффициента К (в матем. статистике) в качестве меры зависимости оправдано лишь тогда, когда совместное распределение пары (X, ) нормально или приближенно нормально (см. Нормальное распределение); употребление r как меры зависимости между произвольными и Х приводит иногда к ошибочным выводам, т. к. r может равняться нулю даже тогда, когда строго зависит от X. Если двумерное распределение Х и нормально, то линии регрессии по Х и Х по суть прямые у = m+b (x — mx) и х = mx+bx (у — m), где и ; b и bX именуются коэффициентами регрессии, причем
.
Так как в этом случае
Е ( - y (x*(2 = s2 (1 - r2)
и
Е ( - x (y*(2 = s2X (1 - r2)
то очевидно, что r (корреляционные отношения совпадают с r2 полностью определяет степень концентрации распределения вблизи линий регрессии: в предельном случае r = ± 1 прямые регрессии сливаются в одну, что соответствует строгой линейной зависимости между и X, при r = 0 величины не коррелированы. К между диаметрами и высотами 624 стволов северной сосны< Диаметр, см | Высота, м | Итого | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 14-17 | 2 | 2 | 5 | 1 |
|
|
|
|
|
|
|
|
|
| 10 | 18-21 | 1 | 3 | 3 | 12 | 15 | 9 | 4 |
|
|
|
|
|
|
| 47 | 22-25 | 1 | 1 | 1 | 3 | 18 | 24 | 29 | 14 | 7 |
|
|
|
|
| 98 | 26-29 |
|
|
|
| 7 | 18 | 30 | 43 | 31 | 3 | 2 |
|
|
| 134 | 30-33 |
|
|
|
| 1 | 5 | 18 | 29 | 35 | 18 | 7 | 1 |
|
| 114 | 34-37 |
|
|
|
|
| 1 | 3 | 17 | 33 | 26 | 12 | 6 |
|
| 98 | 38-41 |
|
|
|
|
|
| 2 | 2 | 10 | 19 | 16 | 4 |
|
| 53 | 42-45 |
|
|
|
|
|
|
|
| 4 | 13 | 6 | 8 |
| 1 | 32 | 46-49 |
|
|
|
|
|
|
| 3 | 3 | 7 | 6 | 2 | 1 |
| 22 | 50-53 |
|
|
|
|
|
|
|
| 1 | 4 | 4 | 2 | 1 |
| 12 | 54-57 |
|
|
|
|
|
|
|
|
| 1 | 1 | 1 |
|
| 3 | 58 и более |
|
|
|
|
|
|
|
|
|
| 1 |
|
|
| 1 | Итого | 4 | 6 | 9 | 16 | 41 | 57 | 86 | 108 | 124 | 91 | 55 | 24 | 2 | 1 | 624 | Средний диаметр | 18,5 | 18,6 | 17,7 | 20,0 | 22,9 | 25,0 | 27,2 | 30,1 | 32,7 | 38,3 | 40,0 | 41,8 | 49,5 | 43,5 | 31,2 |
При изучении связи между несколькими случайными величинами X1,..., Xn пользуются множественными и частными корреляционными отношениями и коэффициентами К (в матем. статистике) (последними по-прежнему в случае линейной связи). Основной характеристикой зависимости являются коэффициенты rij — простые коэффициенты К (в матем. статистике) между Xi и Xj, в совокупности образующие корреляционную матрицу (rij) (очевидно, rij = rji и rkk = 1). Мерой линейной К (в матем. статистике) между X1 и совокупностью всех остальных величин X2,..., Xn служит множественный коэффициент К (в матем. статистике), равный при n = 3
.
Если предполагается, что изменение величин X1 и X2 определяется в какой-то мере изменением остальных величин X3,..., Xn, то показателем линейной связи между X1 и X2 при исключении влияния X3,..., Xn; является частный коэффициент К (в матем. статистике) X1 и X2 относительно X3,..., Xn, равный в случае n= 3
Множественные и частные корреляционные отношения выражаются несколько сложнее.
В математической статистике разработаны методы оценки упомянутых выше коэффициентов и методы проверки гипотез об их значениях, использующие их выборочные аналоги (выборочные коэффициенты К (в матем. статистике), корреляционные отношения и т. п.). См. Корреляционный анализ.
Лит.: Дунин- Барковский И. В., Смирнов Н. В., Теория вероятностей и математическая статистика в технике (Общая часть), М., 1955; Крамер Г., Математические методы статистики, пер. с англ., М., 1948; Хальд А., Математическая статистика с техническими приложениями, пер. с англ., М., 1956; Ван дер Варден Б. Л., Математическая статистика, пер. с нем., М., 1960; Митропольский А. К (в матем. статистике), Техника статистических вычислений, 2 изд., М., 1971.
А. В. Прохоров.
|
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 14.09.2024 01:21:13
|
|
|
|
|
|
|
|
|
|