|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Корреляционный анализ | Корреляционный анализ (далее К) совокупность основанных на математической теории корреляции методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К экспериментальных данных заключает в себе следующие основные практические приемы: 1) построение корреляционного поля и составление корреляционной таблицы; 2) вычисление выборочных коэффициентов корреляции или корреляционного отношения; 3) проверка статистической гипотезы значимости связи. Дальнейшее исследование заключается в установлении конкретного вида зависимости между величинами (см. Регрессионный анализ). Зависимость между тремя и большим числом случайных признаков или факторов изучается методами многомерного К (вычисление частных и множественных коэффициентов корреляции и корреляционных отношений).
Корреляционное поле и корреляционная таблица являются вспомогательными средствами при анализе выборочных данных. При нанесении на координатную плоскость выборочных точек получают корреляционное поле. По характеру расположения точек поля можно составить предварительное мнение о форме зависимости случайных величин (например, о том, что одна величина в среднем возрастает или убывает при возрастании другой). Для численной обработки результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке корреляционной таблицы (см. в ст. Корреляция в математической статистике) приводятся численности гц; тех пар (х, у), компоненты которых попадают в соответствующие интервалы группировки по каждой переменной.
Предполагая длины интервалов группировки (по каждому из переменных) равными между собой, выбирают центры xi (соответственно yj) этих интервалов и числа nij в качестве основы для расчетов.
Коэффициент корреляции и корреляционное отношение дают более точную информацию о характере и силе связи, чем картина корреляционного поля. Выборочный коэффициента корреляции определяют по формуле:
,
где
, ,
, .
При большом числе независимых наблюдений, подчиняющихся одному и тому же распределению, и при надлежащем выборе интервалов группировки коэффициент близок к истинному коэффициенту корреляции r. Поэтому использование как меры связи имеет четко определенный смысл для тех распределений, для которых естественной мерой зависимости служит r (т. е. для нормальных или близких к ним распределений). Во всех др. случаях в качестве характеристики силы связи рекомендуется использовать корреляционное отношение h, интерпретация которого не зависит от вида исследуемой зависимости.
Выборочное значение y|x вычисляется по данным корреляционной таблицы:
2y|x =
где числитель характеризует рассеяние условных средних значений около безусловного среднего (аналогично определяется выборочное значение x|y). Величина y|x используется в качестве меры отклонения зависимости от линейной, т. к. обычно 2y|x>r2, x|y>r2 и лишь в случае линейной зависимости r2=2y|x=x|y. Так, при анализе корреляции между высотой и диаметром северной сосны было обнаружено, что условные средние значения высоты сосны для заданного диаметра связаны нелинейной зависимостью. Корреляционное отношение (высоты к диаметру) в этом случае равно 0,813, а коэффициент корреляции равен 0,762.
Проверка гипотезы значимости связи основывается на знании законов распределения выборочных корреляционных характеристик. В случае нормального распределения величина выборочного коэффициента корреляции считается значимо отличной от нуля, если выполняется неравенство
,
где ta есть критическое значение t-распределения Стьюдента с (n-2) степенями свободы, соответствующее выбранному уровню значимости a (см. Стьюдента распределение). Если же известно, что r ¹ 0, то необходимо воспользоваться z-преобразованием Фишера (не зависящим от r и n):
.
Исходя из приближенной нормальности z, можно определить доверительные интервалы для истинного коэффициента корреляции r.
В случае когда изучаются не количественные признаки, а качественные, обычные меры зависимости не годятся. Однако, если удается каким-либо образом упорядочить изучаемые объекты в отношении некоторого признака, т. е. прописать им порядковые номера - ранги (по два номера в соответствии с двумя признаками), то в качестве выборочной характеристики связи можно воспользоваться, например, т. н. коэффициентом ранговой корреляции:
,
где di - разность рангов по обоим признакам для каждого объекта. По степени уклонения R от нуля можно сделать некоторое заключение о степени зависимости качественных признаков. Проверка гипотезы независимости признаков при небольшом объеме выборки производится с помощью специальных таблиц, а при n > 10 для вычисления критических значений выборочных коэффициентов пользуются тем, что эти величины распределены приближенно нормально.
Лит. см. при ст. Корреляция.
А. В. Прохоров. |
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 13.09.2024 23:54:15
|
|
|
|
|
|
|
|
|
|