| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Изменение функции |  | Изменение функции (далее И) вариация функции, одна из важнейших характеристик функции действительного переменного. Пусть функция f (x) задана на некотором отрезке (a, b); ее изменением, или полным изменением, на этом отрезке называется верхняя грань сумм 
 
  
 распространенная на всевозможные разбиения
 
 
  
 отрезка (a, b) на конечное число частей. Геометрически изменение непрерывной функции f (x) представляет собой длину проекции кривой у = f (x) на ось ординат, считая кратность покрытия (теорема Банаха). И f (x) на отрезке (а, b) принято обозначать символом
 
 
  . 
 Если функция f (x) имеет непрерывную производную, то
 
 
  
 Свойства И: 1) если а < Ь < с, то
 
 
  
 Существуют непрерывные функции, изменение которых бесконечно; например,
 
 
  
 Если И конечно, то такая функция называется функцией с ограниченным изменением (функцией с конечным изменением, или функцией ограниченной вариации). Функции с ограниченным изменением были определены и впервые изучались К. Жорданом (1881). Многие важные функции принадлежат к числу функций с ограниченным изменением, например монотонные функции, заданные на отрезке, функции с конечным числом максимумов и минимумов, функции, удовлетворяющие Липшица условию. Всякая функция с ограниченным изменением на отрезке (а, b) имеет не более чем счетное множество разрыва точек, и притом первого рода, интегрируема по Риману и есть разность двух неубывающих функций (К. Жордан). Предел сходящейся последовательности функций с равностепенно ограниченными изменениями есть функция с ограниченным изменением. Функции с ограниченным изменением имеют почти всюду конечную производную, которая интегрируема по Лебегу (теорема А. Лебега).
 
 Функции с ограниченным изменением имеют приложения в теории интеграла Стилтьеса, в теории тригонометрических рядов, в геометрии.
 
 Лит.: Александров П. С. и Колмогоров А. Н., Введение в теорию функций действительного переменного, 3 изд., М. - Л., 1938; Kaмкe Э., Интеграл Лебега-Стилтьеса, пер. с нем., М., 1959; Лузин Н. Н., Интеграл и тригонометрический ряд, М. - Л., 1951; Лебег А., Интегрирование и отыскание примитивных функций, пер. с франц., М. - Л., 1934; Рудин У., Основы математического анализа, пер. с англ., М., 1966.
 
 С. Б. Стечкин.
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 22:44:45 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |