|
|
Большая Советская Энциклопедия (цитаты)
|
|
|
|
Вырожденный газ | Вырожденный газ (далее В)газ, свойства которого существенно отличаются от свойств классического идеального газа вследствие квантовомеханического влияния одинаковых частиц друг на друга. Это взаимное влияние частиц обусловлено не силовыми взаимодействиями, отсутствующими у идеального газа, а тождественностью (неразличимостью) одинаковых частиц в квантовой механике (см. Тождественности принцип). В результате такого влияния заполнение частицами возможных уровней энергии даже в идеальном газе зависит от наличия на данном уровне других частиц. Поэтому теплоемкость и давление такого газа иначе зависят от температуры, чем у идеального классического газа; по-другому выражается энтропия, свободная энергия и т. д.
Вырождение газа наступает при понижении его температуры до некоторого значения, называемого температурой вырождения. Полное вырождение соответствует абсолютному нулю температуры.
Влияние тождественности частиц сказывается тем существеннее, чем меньше среднее расстояние между частицами r по сравнению с длиной волны де Бройля частиц l = h/mv (m — масса частицы, v — ее скорость, h — Планка постоянная). Это объясняется тем, что классическая механика применима к движению частиц газа лишь при условии r >> l. Так как скорость частиц газа связана с температурой (чем больше скорость, тем выше температура), то температура вырождения, определяющая границу применимости классической теории, тем выше, чем меньше масса частиц газа и чем больше его плотность (т. е. чем меньше среднее расстояние между частицами). Поэтому температура вырождения особенно велика (порядка 10 000 К) для электронного газа в металлах: масса электронов очень мала (~ 10-27 г), а их плотность в металлах очень велика (1022 электронов в 1 см3). Электронный газ в металлах вырожден при всех температурах, при которых металл остается в твердом состоянии.
Для обычных и молекулярных газов температура вырождения близка к абсолютному нулю, так что такой газ практически всегда ведет себя как классический (при таких низких температурах все вещества находятся в твердом состоянии, кроме являющегося квантовой жидкостью при сколь угодно близких к абсолютному нулю температурах).
Поскольку характер несилового влияния тождественных частиц друг на друга различен для частиц с целым (бозоны) и полуцелым (фермионы) спином, то поведение газа из (ферми-газа) и из бозонов (бозе-газа) также будет различным при вырождении.
У (к которому относится электронный газ в металле) при полном вырождении (при Т = 0 К) заполнены все нижние энергетические уровни вплоть до некоторого максимального, называемого уровнем а все последующие остаются пустыми. Повышение температуры лишь незначительно изменяет такое распределение электронов металла по уровням: малая доля электронов, находящихся на уровнях, близких к уровню переходит на пустые уровни с большей энергией, освобождая таким образом уровни ниже с которых был совершен переход.
При вырождении газа бозонов из частиц с отличной от нуля массой (такими бозонами могут быть и молекулы) некоторая доля частиц системы должна переходить в состояние с нулевым импульсом; это явление называется Бозе — Эйнштейна конденсацией. Чем ближе температура к абсолютному нулю, тем больше частиц должно оказаться в этом состоянии. Однако, как уже говорилось, системы таких частиц при понижении температуры до очень низких значений переходят в твердое или жидкое (для состояния, в которых значительны силовые взаимодействия между частицами и к которым поэтому неприменимо приближение идеального газа. Явление Бозе — Эйнштейна конденсации в жидком который можно рассматривать как неидеальный газ из так называемых квазичастиц, приводит к появлению сверхтекучести.
Для газа из бозонов нулевой массы, к которым относятся фотоны (спин 1), температура вырождения равна бесконечности; поэтому фотонный газ — всегда вырожденный и классическая статистика к нему не применима ни при каких условиях. Фотонный газ является единственным вырожденным идеальным бозе-газом стабильных частиц. Однако Бозе — Эйнштейна конденсации в нем не происходит, так как не существует фотонов с нулевым импульсом (фотоны всегда движутся со скоростью света). При нулевой абсолютной температуре фотонный газ перестает существовать.
См. также Статистическая физика, Металлы, Полупроводники и лит. при этих статьях.
Г. Я. Мякишев. |
Для поиска, наберите искомое слово (или его часть) в поле поиска
|
|
|
|
|
|
|
Новости 08.10.2024 08:13:03
|
|
|
|
|
|
|
|
|
|