| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Целая функция |  | Целая функция (далее Ц) функция, аналитическая во всей плоскости комплексного переменного (см. Аналитические функции). Примерами Ц могут служить алгебраический многочлен a0 + a1z +... + anzn, функции sinz, cosz, ez. Бесконечно удаленная точка является, вообще говоря, изолированной особой точкой Ц Для того чтобы бесконечно удаленная точка была устранимой особой точкой (соответственно полюсом), для Ц f (z) необходимо и достаточно, чтобы f (z) была постоянна (соответственно была алгебраическим многочленом). Если точка z = ¥ является существенно особой точкой для Ц f (z), то f (z) называют трансцендентной Ц Таковы, например, функции sinz, cosz, ez. 
 Для того чтобы f (z) была Ц, необходимо и достаточно, чтобы по крайней мере для одной точки z0 имело место соотношение
 
 
  
 В этом случае разложение f (z) в ряд Тейлора
 
 
  
 будет сходиться по всей плоскости комплексного переменного.
 
 Основой для классификации трансцендентных Ц служит скорость роста М (r) функции, определяемой равенством
 
 
  
 Величину
 
 
  
 называют порядком Ц f (z). В трудах А. Пуанкаре, Ж. Адамара и Э. Бореля была установлена связь между порядком Ц и распределением ее нулей.
 
 Лит.: Маркушевич А. И., Целые функции, М., 1965.
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 01.11.2025 00:45:10 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |