| 
 
    
     |   |   | Большая Советская Энциклопедия (цитаты) |   |   |  
     |  | 
  
| Дискриминант |  | Дискриминант (далее Д) (от лат. discriminans - разделяющий, различающий) многочлена 
 (x) = a0xn + a1xn-1 +... + an,
 
 выражение
 
 D = a02n-2Пi <k (ai - ak),
 
 в котором произведение распространено на всевозможные разности корней a1, a2,..., an уравнения Р (х) = 0. Д обращается в нуль тогда и только тогда, когда среди корней многочлена имеются равные. Д можно выразить через коэффициенты многочлена Р (х), представив его в виде определителя, составленного из этих коэффициентов (см. Результант); так, для многочлена 2-й степени ax2 + bx + с Д является выражение b2 - 4ac; для x3 + px + q - выражение - 4р3 - 27q2. Д отличается лишь множителем - a0 от результанта R (, ") многочлена Р (х) и его производной Р"(х).
 
 
 |  
 Для поиска, наберите искомое слово (или его часть) в поле поиска
 
 
 |   |  
     |  |  |  |  
 
    
     |   |   | Новости 31.10.2025 17:02:55 |   |   |  
     |  |  |   |  
     |  |  |  |  
 |